Continuous 3D Printing


The company Carbon3D came out of two years of stealth mode Monday night with a simultaneous TED Talk and Science paper publication. Their new tech, which they say could be used in industrial applications within the next year, makes coveted 3-D printers the likes of those sold by MakerBot look like child’s play.

Unlike conventional 3D printing, this printer continuously forms a new object, rather than printing it in layers. As a result, it’s much faster than conventional 3D printing (it takes minutes, instead of hours). There are a few different types of existing 3D printers, but they mostly work via the same principle: a printing head passes over a platform over and over, depositing layer after layer of a material like plastic in a precise pattern. Over time, these layers combine to form the desired object — much like a paper printer forms text on a page by putting down row after row of ink. By contrast, this new continuous 3D printer would do away with the layers entirely. Instead, a platform draws the object continuously out of a bath of liquid resin.

The resin solidifies when ultraviolet light hits it (a process called photopolymerization). So to create the desired item, a projector underneath the resin pool shoots UV light, in the form of a series of cross-sectional images of the object. Light, in a sense, is the blade that the printer uses to sculpt its products. Meanwhile, oxygen prevents this reaction from occurring — so to stop the object from simply hardening and sticking to the floor of the pool, there’s a layer of dissolved oxygen there, creating an ultra-thin “dead zone” at the very bottom.


2D Rubens’ Tube Visualizes Sound in a Plane of Fire

German physicist Heinrich Rubens became a god among nerds in 1905 when he invented a tube that uses fire to visualize standing sound waves. When there is no sound fed into the tube, the flames rise to the same height. When a sound is added into the tube, the waveform actually affects the amount of gas that is fed through each hole.

At the point of maximum displacement on the wave (the anti-node), the gas pressure varies. The pressure is highest when the wave crests and the gas is pushed closer to the hole, which forces more fuel out and causes the flame to grow higher. When the wave pushes down into the trough, it can’t really suck the gas back in. The flame has enough gas and oxygen to remain burning higher until the wave crests at that point again.

The part of the wave which crosses the midline and remains unchanged is referred to as the node. This area in the Rubens tube doesn’t have the pressure fluctuation and remains relatively low.

Of course, volume plays a big role on how these flames appear. The above description applies when the volume is high, but if the incoming sound is quiet, the crest of the wave isn’t enough to overpower the opposite pressure of the trough, and the anti-nodes actually appear smaller than the nodes.

Derek Muller from Veritasium traveled to Denmark in order to check out an updated version of the Rubens tube. These physicists and chemists have developed an apparatus with 2,500 holes in the top. The key difference is that these holes are not all in a line like a traditional Rubens tube, but actually cover an entire plane.

The results are pretty amazing. Check it out:


Stronger by Stress Plastics

A new type of plastic developed at Duke University that actually gets stronger when it is stressed.

“The carefully designed molecular structure of the material is what gives it this unusual property. Like all plastics, this one has a backbone composed mostly of carbon. However, the carbon atoms are arranged in a series of triangles extending down in long chains with two bromine atoms at one point.
The researchers included a molecule called a carboxylate in this plastic to utilize those bonding sites. This cross-links multiple chains and increases the material’s strength at the site of damage. Because this material reacts to mechanical force instead of light, heat, or chemical exposure, it is called a mechanophore.”

This could be implemented into phones, to make more durable medical implants or even stronger prosthetics that resist wear and tear.




Velociraptor Scientist

I decided to procrastinate on my work one day so I made my interpretation of what a velociraptor would look like if he decided to become a scientist. It was for science of course. It was a vector drawing created in Illustrator, I think it should be a poster.